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Abstract

The paper deals with the thermo-elastic interactions due to distributed periodically varying heat sources in a homo-
geneous, isotropic, unbounded elastic medium in the context of the theory of thermo-elasticity without energy dissipa-
tion. Closed form solutions for displacement, temperature, stress and strain are derived by using Laplace transform on
time and then Fourier transform on space. It reveals that the interactions consist of two coupled modified dilatational
and thermal waves modified by finite thermal wave speed and thermo-elastic coupling traveling with finite speeds and
without attenuation. The results are compared with previous results derived by using other generalized thermo-elasticity
theories. Numerical results for a hypothetical material are presented.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Problems relating to wave propagation in generalized theories of thermo-elasticity which admit finite
speed of thermal signals (second sound effect) in elastic solids have been the subject of active research in
recent years. According to these theories, the classical heat transport equation based on Fourier�s law be-
comes fully hyperbolic and thereby the paradox of infinite speed of thermal signals in classical theories is
eliminated. Among the generalized theories, the extended thermo-elasticity theory (ETE) proposed by Lord
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Nomenclature

q constant mass density
sij component of stress tensor
ui component of displacement vector
k,l Lame constants
eij component of strain tensor
dij Kronecker delta
D dilatation
b (3k+2l)at = 3kat
k ðkþ 2

3 lÞ = bulk modulus
at coefficient of linear thermal expansion
CV specific heat at constant strain
T0 uniform reference temperature
Q external rate of supply of heat per unit mass
K* a material constant characteristic of the theory

C1

ffiffiffiffiffiffiffiffiffiffiffi
ðkþ2lÞ

q

q
= dilatational wave velocity

C3

ffiffiffiffiffiffi
K�

qCm

q
= finite thermal wave speed in TEWOED

CT non dimensional thermal wave speed in TEWOED
eT thermo-elastic coupling constant
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and Shulman (1967) and the temperature-rate dependent thermo-elasticity theory (TRDTE) developed by
Green and Lindsay (1972) have been the subject of recent investigation. Because of the experimental evi-
dence in support of finiteness of heat propagation speed, these generalized thermo-elasticity theories are
considered to be more realistic than the conventional thermo-elasticity theory (CTE), particularly in the
case of those problems involving very large heat fluxes for short intervals occurring in laser units and energy
channels. Several authors like Norwood and Warren (1969), Nayfeh and Nemat-Nasser (1971), Puri (1972),
Agarwal (1978), Roychoudhuri and Debnath (1983) and Roychoudhuri (1984, 1985) have studied wave
propagation in thermo-elastic and magneto–thermo-elastic solids in the context of ETE and TRDTE.

Problems using CTE concerning an infinite isotropic thermo-elastic solid with distributed time-depen-
dent heat sources have been investigated by Paria (1969). The solutions derived by Paria (1969) consist
of a wave part traveling with the speed of modified dilatational wave and a part which is diffusive in nature.
Later Roychoudhuri and Bhatta (1981), Roychoudhuri and Sain (1982), Roychoudhuri et al. (1983) inves-
tigated the distribution of temperature, displacement, stress and strain in an infinite isotropic solid having
instantaneous and continuous heat sources in the context of the ETE and in generalized magneto–thermo-
elasticity respectively. In these works small-time solutions were achieved. Later, Sharma (1986) investigated
the problem in the context of the TRDTE. The solutions derived by Roychoudhuri and Bhatta (1981),
Roychoudhuri and Sain (1982), Roychoudhuri et al. (1983) and Sharma (1986) consist of two waves—
one modified dilatational wave and the other modified thermal wave, modified by thermal coupling and
thermal relaxation time. The solutions also exhibited discontinuities of the various fields at both the wave
fronts and that the discontinuities decay exponentially with distance at the corresponding wave fronts. All
the above investigations were carried out in the presence of a thermal field which accommodates dissipation
of thermal energy.

Recently, Green and Naghdi (1993) developed a generalized theory of thermo-elasticity which involves
thermal displacement gradient as one of the constitutive variables in contrast to the classical coupled
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thermo-elasticity which includes temperature gradient as one of the constitutive variables. An important
feature of this theory is that it does not accommodate dissipation of thermal energy. In this theory the char-
acterization of material response for thermal phenomena is based on three types of constitutive response
functions. The nature of those three types of constitutive response functions is such that when the respective
theories are linearised, type I is the same as classical heat conduction equation (based on Fourier�s law),
type II and III admit propagation of thermal signals at finite speeds. But the special characteristic of type
II is that it does not accommodate thermal energy dissipation. Several investigations relating to thermo-
elasticity without energy dissipation theory (TEWOED) have been presented by Chandrasekharaiah
(1996a,b), Chandrasekharaiah and Srinath (1997, 1998), Sharma and Chouhan (1999), and Roychoudhuri
and Bandyapadhyay (2004).

The main object of the present paper is to study the thermo-elastic interactions in an isotropic homoge-
neous infinite thermo-elastic solid containing time-dependent distributed heat sources which vary periodi-
cally for a finite time interval in the context of TEWOED of type II. It reveals that the interactions consist
of two coupled waves, one following the other and propagating with finite speeds modified by thermal cou-
pling and finite thermal wave speed in TEWOED—one is the predominantly modified elastic wave and
other the modified thermal wave and both the waves propagate un-attenuated in contrast to the results de-
rived by Roychoudhuri and Bhatta (1981), Roychoudhuri and Sain (1982), Roychoudhuri et al. (1983) and
Sharma (1986) using ETE and TRDTE, where the waves undergo exponential attenuation at the wave
fronts. The expressions for displacement, temperature, stress and strain are derived which show that all
the results are continuous at both the wave fronts as expected since the heat source is a continuous function
of time. Numerical results for a hypothetical material are also presented. The graphical representations
indicate that the points of the medium that are beyond the faster wave front do not experience any distur-
bance. This means that displacement, temperature, stress and strain are identically zero at positions beyond
the faster wave front in agreement with the analytical results derived here. This phenomenon has been
noticed also in other generalized thermo-elasticity theories such as ETE and TRDTE. The study made
in this analysis thus brings to light some similarities and differences between TEWOED, ETE, TRDTE
and CTE.
2. Formulation of the problem: basic equations

We consider a homogeneous, thermally conducting isotopic infinite elastic solid at a uniform reference
temperature T0. The infinite solid is also subjected to periodically varying heat sources distributed over a
plane area.

The medium is supposed to be unstrained and unstressed initially, but has a uniform reference temper-
ature throughout. It is then subjected to distributed heat sources over the plane x = 0 and the solid occupies
the whole space �/ < x < /.

From the symmetry of the problem the displacement vector~u has only one component in the x direction
so that~u ¼ ½uðx; tÞ; 0; 0� and the temperature increase is h = h(x, t), where x denotes the spatial co-ordinate
and t, the time.

For a homogeneous, isotropic elastic solid, the basic equations for the linear generalized theory of ther-
mo-elasticity of type-II without energy dissipation developed by Green and Naghdi (1993) in absence of
body forces are
sij;j ¼ q€uiði; j ¼ 1; 2; 3Þ; ð1Þ

sij ¼ ðkD� bhÞdij þ 2leijði; j ¼ 1; 2; 3Þ ð2Þ
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with
eij ¼
1

2
ðui;j þ uj;iÞ i; j ¼ 1; 2; 3
and
qCV
€hþ bT 0div€~u ¼ qQþ K�r2h ð3Þ
with K * > 0.
For the present problem, Eqs. (1)–(3), in one-dimensional case, reduce to
C2
1

o2u
ox2

� b
q
oh
ox

¼ o2u
ot2

ð4Þ
and
K� o
2h
ox2

þ qQ ¼ qCV
o
2h
ot2

þ bT 0

o
3u

oxot2
: ð5Þ
To transform the above equations in non-dimensional forms, we define the following non-dimensional
variables
n ¼ x
l
; U ¼ ðkþ 2lÞ

bT 0l
u; H ¼ h

T 0

; g ¼ C1t
l

; C2
T ¼ K�

qCV C
2
1

; eT ¼ b2T 0

qCV ðkþ 2lÞ
where g = dimensionless time, l = some standard length, CT ¼ C3

C1
.

Eqs. (4) and (5) in the non-dimensional forms then reduce to
o
2U

on2
� oH

on
¼ o

2U
og2

ð6Þ
and
o2H
og2

þ eT
o3U
onog2

¼ Q0 þ C2
T

o2H

on2
; ð7Þ
where Q0 ¼ Ql2

CV T 0C
2
1

.

For heat sources distributed over the plane x = 0, we may represent it as
Q0 ¼ Q�
0dðnÞ sin

pg
s

� �
; for 0 6 g 6 s and 0 for g > s:
Here Q�
0 is a constant and d(n) is Dirac�s delta function defined by
Z þ1

�1
dðnÞdn ¼ 1; and dðnÞ ¼ 0 for n 6¼ 0:
Finally, we obtain the governing equations in TEWOED of type-II (in absence of body forces) in non-
dimensional forms as
o2U

on2
� oH

on
¼ o2U

og2
ð8Þ
and
o2H
og2

þ eT
o3U
onog2

¼ Q�
0dðnÞ sin

pg
s

� �
þ C2

T

o2H

on2
ð9Þ
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3. Application of Laplace and Fourier transforms, solution of the problem in transformed domain

Applying Laplace transform defined by
/ðn; pÞ ¼
Z 1

0

/ðn; gÞe�pgdg;ReðpÞ > 0
with respect to time variable g and then the complex Fourier transform defined by
/1ða; pÞ ¼
1ffiffiffiffiffiffi
2p

p
Z þ1

�1
/ðn; pÞeiandn
with respect to space variable n to Eqs. (8) and (9), we obtain
ða2 þ p2ÞU 1ða; pÞ ¼ iaH1ða; pÞ; ð10Þ

ðC2
Ta

2 þ p2ÞH1ða; pÞ � iaeTp2U 1ða; pÞ ¼
Q�

0psð1þ e�psÞffiffiffiffiffiffi
2p

p
ðp2 þ p2s2Þ

: ð11Þ
Solving (10) and (11) for U 1ða; pÞ and H1 (a,p), we obtain
U 1ða; pÞ ¼
iaQ�

0psð1þ e�psÞ
ðp2 þ p2s2ÞM� ffiffiffiffiffiffi

2p
p ; ð12Þ

H1ða; pÞ ¼
Q�

0psð1þ e�psÞða2 þ p2Þ
ðp2 þ p2s2ÞM� ffiffiffiffiffiffi

2p
p ; ð13Þ
where
M� ¼ ða2 þ p2ÞðC2
Ta

2 þ p2Þ þ a2p2eT ¼ C2
Ta

4 þ ð1þ C2
T þ eTÞa2p2 þ p4 ¼ C2

Tða2 þ K1Þða2 þ K2Þ:
Here K1 þ K2 ¼ ð1þC2
T
þeT

C2
T

Þp2 and K1K2 ¼ p4

C2
T

,

K1, K2 are the roots of the equation
a4 � 1þ C2
T þ eT

C2
T

p2a2 þ p4

C2
T

 !
¼ 0:
Setting Ki = kip
2, i = 1, 2, we have
k1 þ k2 ¼
1þ C2

T þ eT
C2

T

¼ A > 0;

k1 � k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

T � 1
� �2 þ 2 C2

T þ 1
� �

eT þ e2T

q
C2

T

¼
ffiffiffiffi
C

p

C2
T

¼ B > 0;
where
C ¼ ðC2
T � 1Þ2 þ 2ðC2

T þ 1ÞeT þ e2T

j k
> 0: ð13:1Þ
Here k1 ¼ AþB
2
, k2 ¼ A�B

2
and both are real and
K1 ¼
Aþ B
2

p2 ¼ N 2
1p

2; K2 ¼
A� B
2

p2 ¼ N 2
2p

2
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where
N 2
1;2 ¼

A� B
2

¼ 1

2C2
T

1þ C2
T þ eT

� �
�

ffiffiffiffi
C

ph i
: ð13:2Þ
Again using dimensionless quantities, we obtain
rðn; gÞ ¼ sxx
bT 0

¼ oU
on

�H ð14Þ
and
eðn; gÞ ¼ bT 0

ðkþ 2lÞ
oU
on

¼ M1
oU
on

; here M1 ¼
bT 0

ðkþ 2lÞ ; ð15Þ
where r(n,g) and e(n,g) are respectively the non-dimensional stress and strain.
First by applying Laplace transform on time g and then Fourier transform on space variable n, we

obtain
ðr1Þða; pÞ ¼ �iaU 1ða; pÞ �H1ða; pÞ ¼ �ia
iaQ�

0psð1þ e�psÞ
ðp2 þ p2s2ÞM� ffiffiffiffiffiffi

2p
p � Q�

0psð1þ e�psÞða2 þ p2Þ
ðp2 þ p2s2ÞM� ffiffiffiffiffiffi

2p
p ð16Þ
and
e1ða; pÞ ¼ �iaM1U 1ða; pÞ ¼ M1
a2Q�

0psð1þ e�psÞ
ðp2 þ p2s2ÞM� ffiffiffiffiffiffi

2p
p ð17Þ
Now inverse Fourier transform gives the following solutions in the Laplace transform domain of Eqs.
(12), (13), (16) and (17) for displacement, temperature, stress and strain as
Uðn; pÞ ¼ Q�
0ps

2C2
T N 2

2 � N 2
1

� � e�nN1pð1þ e�psÞ
p2ðp2 þ p2s2Þ � e�nN2pð1þ e�psÞ

p2ðp2 þ p2s2Þ

� �
for n > 0; ð18:1Þ

Hðn; pÞ ¼ Q�
0ps

2C2
T N 2

2 � N 2
1

� � ð1� N 2
1Þ

N 1

e�nN1pð1þ e�psÞ
pðp2 þ p2s2Þ � ð1� N 2

2Þ
N 2

e�nN2pð1þ e�psÞ
pðp2 þ p2s2Þ

� �
for n > 0; ð18:2Þ

rðn; pÞ ¼ Q�
0ps

2C2
T N 2

1 � N 2
2

� � 1

N 1

e�nN1pð1þ e�psÞ
pðp2 þ p2s2Þ � 1

N 2

e�nN2pð1þ e�psÞ
pðp2 þ p2s2Þ

� �
for n > 0 ð18:3Þ
and
eðn; pÞ ¼ M1Q
�
0ps

2C2
T N 2

1 � N 2
2

� � N 1

e�nN1pð1þ e�psÞ
pðp2 þ p2s2Þ � N 2

e�nN2pð1þ e�psÞ
pðp2 þ p2s2Þ

� �
for n > 0: ð18:4Þ
Now inverse Laplace transforms of expressions (18.1)–(18.4) give the closed form solutions for displace-
ment, temperature, stress and strain as
Uðn; gÞ ¼ M g� nN 1ð Þ � s
p
sin

p
s
ðg� nN 1Þ

n o
Hðg� nN 1Þ

h i
þM g� nN 1 � sð Þ þ s

p
sin

p
s
ðg� nN 1Þ

n o
H g� nN 1 � sð Þ

h i
�M ðg� nN 2Þ �

s
p
sin

p
s
ðg� nN 2Þ

n o
Hðg� nN 2Þ

h i
�M g� nN 2 � sð Þ þ s

p
sin

p
s
ðg� nN 2Þ

n o
H g� nN 2 � sð Þ

h i
; ð19:1Þ
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Hðn; gÞ ¼ Mð1� N 2
1Þ

N 1

�
1� cos

p
s
ðg� nN 1Þ

n o
Hðg� nN 1Þ þ 1þ cos

p
s
ðg� nN 1Þ

n o
H g� nN 1 � sð Þ

�

�Mð1� N 2
2Þ

N 2

�
1� cos

p
s
ðg� nN 2Þ

n o
Hðg� nN 2Þ þ 1þ cos

p
s
ðg� nN 2Þ

n o
Hðg� nN 2 � sÞ

�
;

ð19:2Þ

rðn; gÞ ¼ � M
N 1

�
1� cos

p
s
ðg� nN 1Þ

n o
Hðg� nN 1Þ þ 1þ cos

p
s
ðg� nN 1Þ

n o
Hðg� nN 1 � sÞ

�

þ M
N 2

�
1� cos

p
s
ðg� nN 2Þ

n o
Hðg� nN 2Þ þ 1þ cos

p
s
ðg� nN 2Þ

n o
Hðg� nN 2 � sÞ

�
ð19:3Þ
and
eðn; gÞ ¼ �MM1N 1

�
1� cos

p
s
ðg� nN 1Þ

n o
Hðg� nN 1Þ þ 1þ cos

p
s
ðg� nN 1Þ

n o
Hðg� nN 1 � sÞ

�

þMM 1N 2

�
1� cos

p
s
ðg� nN 2Þ

n o
Hðg� nN 2Þ þ 1þ cos

p
s
ðg� nN 2Þ

n o
Hðg� nN 2 � sÞ

�
:

ð19:4Þ
Here M ¼ Q�
0s

2pC2
TðN 2

2 � N 2
1Þ
.

4. Numerical results and discussion

The closed form solutions for displacement, temperature, stress and strain reveal the existence of two
coupled waves. The terms associated with H(g � nN1) and H(g � nN1 � s) represent the contribution of
the wave traveling with speed VE = 1/N1 at the wave front n = VE.t at two different times t = g and
g � s. The terms associated with H(g � nN2) and H(g � nN2 � s) represent the contribution of wave trav-
eling with speed VT = 1/N2 at the wave front n = VT.t at two different times t = g and g � s, where
V E; V T ¼ 1

N 1;2

¼
ffiffiffi
2

p
CTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C2
T þ eT

� �
�

ffiffiffiffi
C

p� 	q : ð20Þ
From solutions (19.1)–(19.4) we thus observe that each of U(n, g), H(n,g), r(n,g) and e(n, g) is made up
of two parts and that each part corresponds to a wave propagating with finite speed, the speed of the wave
corresponding to first part being VE = 1/N1 and that corresponding to second part being VT = 1/N2. Using
the expressions (13.1), (13.2) and (20), we observe that

(i) VE < VT.
(ii) For material in which K� > qCV C

2
1ðCT > 1Þ, VE ! 1 (unit dilatational wave speed) and VT ! CT

(finite thermal wave speed) when eT ! 0. Thus when eT 5 0, VE and VT correspond respectively to
the modified elastic wave (e-wave) and the modified thermal wave (h-wave). The faster wave is predom-
inantly the h-wave and the slower wave is e-wave.

(iii) Further for material in which K� < qCV C
2
1ðCT < 1Þ, VE ! CT (finite thermal wave speed) and VT ! 1

(unit dilatational wave speed) when eT ! 0. Thus when eT 5 0, VE and VT correspond respectively to
the modified thermal wave (h-wave) and the modified elastic wave (e-wave). The faster wave is predom-
inantly the e-wave and the slower wave is h-wave.
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This concludes that the disturbances consist of two coupled waves, one following the other. From the
solutions (19.1)–(19.4), we observe two more interesting features. First, neither the e-wave nor the h-wave
experiences any decay with distance (attenuation). Secondly, all of U(n,g), H(n,g), r(n, g) and e(n,g) are
identically zero for n > VT.g, where VT is the speed of faster wave. This implies that at a given instant
of time g*(>0), the points of the solid that are beyond the faster wave front do not experience any distur-
bance. Further the solutions in the context of ETE (L–S theory) and TRDTE (G–L theory) indicate that
both e-wave and h-wave decay exponentially with distance. This difference between the predictions of
TEWOED and those of ETE and TRDTE stems from the fact that while TEWOED does not sustain
energy dissipation, ETE and TRDTE both do accommodate energy dissipation due to the presence of
temperature-rate term in the heat transport equation.

With an aim to illustrate the problem numerically, we choose eT = 0.073 (Calcium epoxy). Fig. 1 illus-
trates the graphs of VE, VT versus CT. Dotted lines show the variation of VE and VT for eT = 0. The graphs
show that VE = 1 for eT = 0. For eT = 0.073, the thick lines represent the variations of VE and VT versus
CT. Clearly the graph shows that VT > VE implying that modified elastic wave follows the modified thermal
wave for CT > 1. For CT < 1, the faster wave speed is referred to as VE and the slower wave as VT(VE > VT).

Next we consider a copper like material for which eT = 0.0168, and take the representative values T0 = 1,
Q�

0 ¼ 1, s = 1, k = 1.387 · 1012 dyne/cm2, l = 0.448 · 1012 dyne/cm2, at = 1.67 · 10�8/�C, CT > 1 (the fas-
ter wave front happens to be the h-wave front).

In case of TEWOED we choose CT = 2, as a test example so that modified e-wave follows the modified
h-wave. Figs. 2–5 exhibits the variation of displacement, temperature, stress and strain versus distance n
from which we make the following observations:
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Fig. 2 represents variation of displacement versus distance. The graph shows negative values of displace-
ment which means that it is in opposite direction. This is because the heat source varies periodically with
time (a sine pulse active for a short duration). The magnitude of the displacement first increases very rapidly
with distance, attains a maximum value and then gradually decreases to zero values for n P 0.8 (when
g = 0.4) and n P 1.2 (when = 0.6). This is because that the thermal wave front is positioned at n = 0.8



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.2 0.4 0.6 0.8 1.2 1.4

Distance

S
tr

es
s

η=0.6

η=0.4

1

Fig. 4. Stress r(n,g) versus distance n.

-2.50E-09

-2.00E-09

-1.50E-09

-1.00E-09

-5.00E-10

0.00E+00

5.00E-10

1.00E-09

1.50E-09

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

Distance

S
tr

ai
n

η=0.9

η=0.7

1

Fig. 5. Strain e(n,g) versus distance n.

S.K. Roychoudhuri, P.S. Dutta / International Journal of Solids and Structures 42 (2005) 4192–4203 4201
(at the instant g = 0.4) and n = 1.2 (at the instant g = 0.6) and beyond this wave front, the disturbance
vanishes.

Fig. 3 gives the temperature distribution. The graph shows negative values of H, which, in fact refers to
the small temperature change (Chandrasekharaiah and Srinath, 1997). It is decreasing in nature and finally
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vanishes beyond the thermal wave front located at n = 0.8 (when g = 0.4) and n = 1.2 (when g = 0.6) in
agreement with the theoretical results.

Fig. 4 represents variation of stress versus distance. Its magnitude decreases with the increase of distance
and finally goes to zero. r(n,g) lies in the domain 0 6 n 6 0.8 (for g = 0.4) and 0 6 n 6 1.2 (for g = 0.6).
This is also in agreement with the fact that stress should diminish with increasing distance from the plane
n = 0 and that beyond the faster wave front, disturbance must vanish.

Fig. 5 represents variation of strain versus distance. The figure shows negative values for strains in the
range 0 6 n 6 0.35 (for g = 0.7) and 0 6 n 6 0.45 (for g = 0.9) and positive values in the range
0.35 6 n 6 1.4 (for g = 0.7) and 0.45 6 n 6 1.8 (for g = 0.9) and then finally diminishes. The strain distri-
bution after assuming positive values goes on increasing, attains maximum values and then decreases slowly
and finally vanishes. This is also in conformity with the fact that strain should decrease with increasing dis-
tance n from the plane n = 0 where heat source is active for a very short duration. The analytical solutions
for displacement, temperature, stress and strain are identically zero for n > VT Æ g because of the fact that
the points of the solid that are beyond the faster wave front n = VT Æ g do not experience any disturbance.
This is also in agreement with graphical representation (Figs. 2–5), showing location of the faster wave
front at two different instants of time beyond which all disturbances vanish in agreement with the theoret-
ical result thus obtained.
5. Concluding remarks

From the above results we conclude the following points:

(a) We have to choose the value of K * (a material constant characteristic of TEWOED), depending on CT

in such a way that in wave propagation problem in TEWOED it agrees with the inequality VE < VT for
those material for which CT > 1 and VE > VT for those material for which CT < 1.

(b) The points of the medium, at a given instant of time, that lie beyond the faster wave front do not expe-
rience any disturbance. This phenomenon is a characteristic of all the generalized thermo-elasticity the-
ories. Our observations thus verify that TEWOED is really a generalized thermo-elasticity theory.
Further the waves do not experience any attenuation in contrast to the other thermo-elasticity theories.
The present study thus brings to light some similarity and differences between TEWOED, ETE,
TRDTE and CTE.
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